
Bernd Hort
assono GmbH
bhort@assono.de
http://www.assono.de
+49 (0)177 / 44 487 47

OOP in LotusScript – the next step

Building a MVC-Framework

English translation of a session from the EntwicklerCamp in Germany

2EntwicklerCamp 2007

Agenda

• Introduction

• Motivation

• Model View Controller Pattern

• «Class» BaseModel

• «Class» BaseController

• «Class» AbstractChangeListener

• «Class» ItemLevelHistoryChangeListener

• Relations

• Questions & Answers

3EntwicklerCamp 2007

Introduction

• Bernd Hort

• graduated in computer sciences (degree: Diplom-Informatiker)

• Lotus Notes application developer since 1995

• IBM Certified Application Developer - Lotus Notes and Domino 7

• IBM Certified System Administrator –

Lotus Notes and Domino 7

• IBM Certified Instructor SA & AD –

Lotus Notes and Domino 7

4EntwicklerCamp 2007

Motivation

Why should we care?

No more overtime!

5EntwicklerCamp 2007

Motivation

• Development on a higher abstraction level

• Coping with complexity

• Higher level of reusability

• Less error-prone

• Easier to maintain

• Learn it now because it is used by nearly all OO-languages.

…and seriously?

6EntwicklerCamp 2007

Model View Controller Pattern

• Originally introduced in Smalltalk

• Common OO-principle for the
development of GUIs

• Separation of the domain classes
from their presentation

� Model – domain class

� View – presentation

� Controller – user interaction

• The domain class has no knowledge
about their presentation!

7EntwicklerCamp 2007

Model View Controller in Notes

• The form is used for the
presentation of data and interacts
with the user.

• All domain requirements are
realized in a conceptual class.

• The controller class links the
conceptual class to the form.

8EntwicklerCamp 2007

Realization of all the requirements in a conceptual class

• All the requirements from the domain model should be realized in a
conceptual class.

• This includes in particular all input validations and plausibility checks.

• The conceptual class will use no UI-methods so it can be used by backend-
agents.

• That means that the same method for checks and input validation will be
used by agents and for input made by the user.

Validation!

9EntwicklerCamp 2007

Abstract «Class» BaseModel

• Basis for all conceptual classes

• Most of the methods only have a
signature
i.e. the method has to be
implemented in the sub classes

• No UI methods or classes allowed

• The conceptual class inherits from
this class

10EntwicklerCamp 2007

Abstrakte «Class» BaseController

• Connects the conceptual class with
the form

• Handles all the events in the form

11EntwicklerCamp 2007

Form-Event-Handling in Controller Class

• The aim is to minimize the code in the form

Sub Queryopen(Source As Notesuidocument, Mode As Integer, Isnewdoc As Variant,
Continue As Variant)

Call CreateProjectController(source, mode, isNewDoc, continue)
End Sub

Form

«Event»

QueryOpen

«Class»

BaseController

«Sub»

ProcessQueryOpen

On Event […] From currentUIDoc
Call […]

12EntwicklerCamp 2007

Mapping for event handling

Public Sub ProcessQueryOpen(source As NotesUIDocument, mode As Integer, isNewDoc As Variant, continue As Variant)

If Not IsDebugMode Then On Error Goto errorHandler

Set Me.currentUIDoc = source
Me.isNewDocument = Cbool(isNewDoc)

continue = continue And (currentDB.CurrentAccessLevel >= ACLLEVEL_AUTHOR Or mode = 0) ' do not open in edit mode, if user has not at
least author access

If continue Then
If Not Me.isNewDocument Then ' source.Document is valid for existing documents

Call model.initialize(source.Document) ' thus we can initialise the model now
Set currentDoc = model.GetModelDoc()

End If

' register all event handlers
On Event PostOpen From currentUIDoc Call processPostOpen
On Event QueryModeChange From currentUIDoc Call processQueryModeChange
On Event PostModeChange From currentUIDoc Call processPostModeChange
On Event QueryRecalc From currentUIDoc Call processQueryRecalc
On Event PostRecalc From currentUIDoc Call processPostRecalc
On Event QuerySave From currentUIDoc Call processQuerySave
On Event PostSave From currentUIDoc Call processPostSave
On Event QuerySend From currentUIDoc Call processQuerySend
On Event PostSend From currentUIDoc Call processPostSend
On Event QueryClose From currentUIDoc Call processQueryClose

End If
Exit Sub

errorHandler:
If HandleError() Then Resume Next
End

End Sub ' BaseController.ProcessQueryOpen

13EntwicklerCamp 2007

Sample application

• Simple project management

• Parts

� Project

� Task

� Person

� Time sheet

14EntwicklerCamp 2007

Person

• Conceptual requirements in the
«Class» PersonModel

• Connects to the form via the
«Class» PersonController

15EntwicklerCamp 2007

Demo Sample Application

«Form» Person

16EntwicklerCamp 2007

Monitoring of field value changes

• There are a lot of use cases where
there is a need to monitor changes
made to a field value.

� History

� Update of dependent
documents

� Notification if a threshold has
been reached

� …

• Instead of writing the same kind of
code again and again it is a much
better idea to encapsulate the
functionality in a class

17EntwicklerCamp 2007

«Class» AbstractChangeListener – to monitor field level changes

• With the method
SetMonitoredItems(monitoredItems As String)

the fields to be monitored while be set

• The parameter is a string with a comma separated list of field names
in the format

Label|Field name
or only the

Field name

• e.g. "Person number | EmployeeID, Name, Last name|Lastname,
First name|Firstname"

18EntwicklerCamp 2007

Inherited «Class» MonitoringModel

• «Class» MonitoringModel inherits
from «Class» BaseModel

• Manages the interested
ChangeListener [0..*]

• Holds internally a list of fields to be
monitored

• Reacts on different events

• Informs the interested
ChangeListener about changes on

� Field level

� Document level

19EntwicklerCamp 2007

Possible Events

• The following events are supported

'/**

' * ID of "before saving" event (QuerySave).

'**/

Public Const CHANGE_LISTENER_EVENT_BEFORE_SAVING% = 1

'/**

' * ID of "after saving" event (PostSave).

'**/

Public Const CHANGE_LISTENER_EVENT_AFTER_SAVING% = 2

'/**

' * ID of "before closing" event (QueryClose).

'**/

Public Const CHANGE_LISTENER_EVENT_BEFORE_CLOSING% = 3

20EntwicklerCamp 2007

Sequence Diagram
ChangeListener

• Triggered by the event
QuerySave

• Method
MonitoringModel.
BeforeSave()

• On a change at field
level calls
MonitoringModel.
ItemChanged()

• Calls .ItemChanged()
for all in this event
interested
ChangeListeners

• Calls MonitoringModel.
ModelChanged()

• Calls .ModelChanged()
for all the interested
ChangeListeners

21EntwicklerCamp 2007

«Class» ItemLevelHistoryChangeListener

• Writes a history of changes at the
field level

• Overloads the methods

� IsEventMonitored

� ItemChanged

� ModelChanged

«abstract»

AbstractChangeListener

+ IsEventMonitored(eventID As Integer) : Boolean

+ ItemChanged(eventID As Integer, itemName As String,

 itemLabel As String, itemType As Integer,

 oldValue As Variant, newValue As Variant)

+ ModelChanged(eventID As Integer)

- itemLevelChanges As String

ItemLevelHistoryChangeListener

22EntwicklerCamp 2007

Person – Use of ItemLevelHistoryChangeListener

• Changing the superclass for the
«Class» PersonModel
into
«Class» MonitoringModel

• In the «Class» PersonController
the «Class» ItemLevelHistory-
ChangeListener
has to be defined

23EntwicklerCamp 2007

Demo Sample Application

«Form» Person

24EntwicklerCamp 2007

Relations

• The idea was inspired by a session held by Jens-B Augustiny at the
EntwicklerCamp 2006.

• Makes updating dependent documents configurable

• Advantages:

� Easy to enhance

� Implicit documentation

� „Dependency Injection“

25EntwicklerCamp 2007

Relations

«Form»
Source form

«Form»
Target form

«Form»
Relation

Source
Key field

Source
Field list to
be updated

Source
Form name

Target
Form name

Target
Key field

Target
Field list to
be updated

26EntwicklerCamp 2007

«Class» Relation

• Represents the relation document
with the settings for source
document

• Updates the dependent documents
(target documents)

+ New(relationID As String)

+ Initialize(relationDoc As NotesDocument)

+ ReadOldKeyValueFromSourceDoc(

 sourceDoc As NotesDocument)

+ IsItemMonitored(itemName As String)

+ UpdateDependentDocuments(

 sourceDoc As NotesDocument)

...

- oldKeyValue As String

- monitoredItemNames As Variant

- keyItemName As String

...

Relation

27EntwicklerCamp 2007

«Class» RelationChangeListener

• Manages all the for this form found
relations

• Is been used by the
«Class» BusinessModel

«abstract»

MonitoringModel

1

1

«abstract»

BaseModel

«abstract»

BusinessModel

+ IsEventMonitored(eventID As Integer) : Boolean

+ ItemChanged(eventID As Integer, itemName As String,

 itemLabel As String, itemType As Integer,

 oldValue As Variant, newValue As Variant)

+ ModelChanged(eventID As Integer)

- relationsList List As Relation

RelationsChangeListener

Relation

*

1

28EntwicklerCamp 2007

Project

• Conceptual requirements in the
«Class» ProjektModel

• Is a subclass of the
«Class» BusinessModel
to take advantage of relations

• Connected to the form via the
«Class» ProjektController

«abstract»

BusinessModel

ProjektModel

«abstract»

BaseController

ProjektController

«abstract»

MonitoringModel

«abstract»

BaseModel

29EntwicklerCamp 2007

Demo Sample Application

«Form» Projekt

30EntwicklerCamp 2007

Summary ChangeListener

• Consciously avoiding the use of UI-methods and classes
=> so the change listener could be used by back-end classes

• Flexible and expandable concept

• Through inheritance only the individual aspects has to be
implemented

31EntwicklerCamp 2007

General summary

• The encapsulation of all the conceptual requirements in a class
makes the application a lot easier to maintain because all the
relevant code is together in one place.

• The same code could be used in the UI and in the back-end.

• Through inheritance from the «Class» BaseModel a common
interface is used for all conceptual classes.

• The use of the MVC-Framework helps the developer to concentrate
on the conceptual part of the application

• The framework is easy to enhance.

32EntwicklerCamp 2007

Questions?

33EntwicklerCamp 2007

Contact & Download

Bernd Hort

assono GmbH

Lise-Meitner-Straße 1-7

D-24223 Raisdorf

Germany

Phone +49 (0)4101/4 87 47

Cell phone +49 (0)177/4 44 87 47

bhort@assono.de

Download of the slides and samples
http://www.assono.de/blog.nsf/d6plinks/EntwicklerCamp2007

34EntwicklerCamp 2007

Slides Backup

35EntwicklerCamp 2007

OO in LotusScript – Definition of a class

Member variables

Constructor

Property Get

Property Set

Class Company
Private strCompanyName As String
Private strCompanyNr As String
Public ContactName As String

Sub New (strCompanyName As String, strCompanyNr As String)
Me.strCompanyName = strCompanyName
Me.strCompanyNr = strCompanyNr

End Sub ‘Company.New

Property Get CompanyName As String
CompanyName = Me.strCompanyName

End Property

Property Set CompanyName As String
Me.strCompanyName = CompanyName

End Property

End Class

Class

36EntwicklerCamp 2007

Use of a class

Dim objCompany As Company 'Definition of the variable

Set objCompany = New Company ("DaimlerChrysler", "DC")

'Initialize Object

objCompany.ContactName = "Dr. Dieter Zetsche" 'Set of a public

member variable

objCompany.CompanyName = "DaimlerChrysler AG" 'Set of a

private member variable through a property

Messagebox objCompany.ContactName & " - " &

objCompany.CompanyName & " (" & objCompany.CompanyNr & ")",

64, "Demo" 'Use of the member variables

37EntwicklerCamp 2007

Inheritance

• Use of the properties and methods from
the superclass

• Enhanced with own properties and
methods

Class Customer As Company
Public TurnOver As Double

Sub New (strCompanyName As String, strCompanyNr As String)

End Sub 'Customer.New

End Class 'Customer

38EntwicklerCamp 2007

Call stack for initialization of a sub class

• First always the constructor of the
superclass is been called

• Followed by all other constructors

• Finally the constructor of the subclass
is called

Set objSubClass = New SubClass

39EntwicklerCamp 2007

Passing the parameters to the superclass

Class Supplier As Company
Private strContractNr As String

Sub New (strCompanyName As String, strCompanyNr As String, _
strContractNr As String), _
Company (strCompanyName, strCompanyNr)

Me.strContractNr = strContractNr

End Sub 'Supplier.New

End Class 'Supplier

Overload of the constructor

• Subclasses can have a different signature than the superclass.

40EntwicklerCamp 2007

Overload methods and properties

• In the subclass methods and properties with the same name could
be defined.

• The signature has to be identical with the superclass.

• To call methods and properties from the superclass use the following
notation:
Superclass..MethodName

41EntwicklerCamp 2007

Standard Notes-Classes could not be derived

• It is not possible to derive the standard Notes-Classes directly in
LotusScript.

• The only way is to use the LSX-Toolkit.

42EntwicklerCamp 2007

Performance

• There is certain overhead with the use of classes

• While looping through a great amount of objects trigger the garbage
collector with
Delete Object

• If a lot of small Script Libraries has to be loaded for a form there
might be a recognizable delay

� Dynamic loading of Script Libraries

43EntwicklerCamp 2007

Dynamic Loading of Script Libraries - References

• Bill Buchan – Lotusphere 2005

� BP107 Best Practices for Object Oriented LotusScript

• IBM Redbook

� “Performance Considerations for Domino Applications”

� SG24-5602

� Appendix B, Page 243

• Gary Devendorf Web Services Samples

44EntwicklerCamp 2007

„Factory“-Class to Create New Objects

• There has to be a “Factory” class next to the normal class

• The object variable has to be declared as a Variant

Class Customer
Sub New (objErrorContainer As ErrorContainer)

End Sub 'Customer.New
End Class 'Customer

Class CustomerFactory
Public Function Produce(objErrorContainer As ErrorContainer) As Variant

Set Produce = New Customer(objErrorContainer)
End Function

End Class 'CustomerFactory

Dim objCustomer as Variant
Set objCustomer = CreateClass(".AppCustomerClass", "Customer", objErrorContainer)

45EntwicklerCamp 2007

„Dynamic Loading“ – The Magic

Using Execute together with a global variable

Public newObject As Variant 'Global defined

Function CreateClass (strScriptLibraryName As String, strClassName As String,
objErrorContainer As ErrorContainer) As Variant

Dim strExecute As String

strExecute = _
|
Use "| & strScriptLibraryName & |"
Sub Initialize

Set newObject = New | & strClassName & |Factory
End Sub
|

Execute strExecute ‘The code in the string will be executed
Set CreateClass = newObject.Produce(objErrorContainer)

End Function

46EntwicklerCamp 2007

Advantages & Disadvantages – „Dynamic Loading“

• Advantages

� Script Libraries will only be loaded if they are
needed.

� Opening of a form is much faster

� During runtime it is possible to load
different classes depending of the platform
or the version!

• Disadvantages

� No more type checking from the compiler!

• Alternatives

� See also OpenDOM on OpenNTF
http://www.openntf.org/projects/pmt.nsf/ProjectLookup/OpenDOM

47EntwicklerCamp 2007

Tools – LotusScript.doc

• Generates a web-based documentation

• Similar to JavaDoc

• Supports additional comments

• http://www.lsdoc.org

• Freeware!

48EntwicklerCamp 2007

Tools - GhostTyper

• Inserting of code snippets directly form the Domino Designer

• http://www.ghosttyper.de

• Costs approx. 35,- €

• My GhostTyper-Archivs could be downloaded from
http://www.hort-net.de/tools.html

• 5% discount if ordering through my website

49EntwicklerCamp 2007

Tools – Teamstudio Script Browser

• Shows all Subs, Functions and Classes in a database

• Analyses references

• http://www.teamstudio.com/support/scriptbrowser.html

• Freeware!

• More free tools via the blog of
Craig Schumann / Chief-Developer from Teamstudio

� http://blogs.teamstudio.com

50EntwicklerCamp 2007

Tools - Class Navigator from NotesHound

• Navigation within a the classes of a Script Library

• http://www.noteshound.com

• 49,95 $

• Sorry, no discount!

51EntwicklerCamp 2007

Tools – Format LotusScript as HTML / RTF

• The for this slides used code coloring

• nsf tools

• http://www.nsftools.com/tips/NotesTips.htm#ls2html

• Freeware!

• Very interesting blog from Julian Robichaux

� http://www.nsftools.com/blog

