
www.assono.de

Em09. How to get my app on mobile?
von Bernd Hort, 15.05.2019
Engage

Bernd Hort
• Master degree in computer science

• Lotus Notes developer since 3.3

• „It’s all about giving the user the right
tool to get the job done.“

I have this cool
idea for an app!

How do I get it on mobile?

Classic Webapp

Complexity

Progressive  
Web Apps

Progressive Web Apps - PWA

• Progressive Web Apps enhance web apps to make them behave  
(a little bit more) like native apps

– Offline

– Start from home screen

– Access the camera

– Local storage

PWA Principles

• Discoverable - so the contents can be found through search engines.

• Installable - so it's available on the device's home screen.

• Linkable - so you can share it by simply sending a URL.

• Network independent - so it works offline or with a poor network connection.

• Progressive - so it's still usable on a basic level on older browsers, but fully-functional on the
latest ones.

• Re-engageable - so it's able to send notifications whenever there's new content available.

• Responsive - so it's usable on any device with a screen and a browser — mobile phones, tablets,
laptops, TVs, fridges, etc.

• Safe - so the connection between you and the app is secured against any third parties trying to
get access to your sensitive data.

Source: Mozilla Developer Network: Introduction to progressive web apps

https://developer.mozilla.org/en-US/docs/Web/Progressive_web_apps/Introduction

Web App Manifest

• The „Web App Manifest“ defines the main settings and appearance

• It is a JSON file linked via 
 

• Definition from Google Developers - The Web App Manifest

<link rel="manifest" href="/manifest.json">

https://developers.google.com/web/fundamentals/web-app-manifest/

Web App Manifest

{
 "short_name": "Maps",
 "name": "Google Maps",
 "icons": [
 {
 "src": "/images/icons-192.png",
 "type": "image/png",
 "sizes": "192x192"
 },
 {
 "src": "/images/icons-512.png",
 "type": "image/png",
 "sizes": "512x512"
 }
],
 "start_url": "/maps/?source=pwa",
 "scope": "/maps/",
 "background_color": "#3367D6",
 "display": "standalone",
 "theme_color": "#3367D6"
}

Service Worker

• The Service Worker is a JavaScript file, which will be executed in a separate  
thread per PWA in the background.

• No direct access to frontend elements

• Implements hooks to react on a number of events

Service Worker

Quelle: https://christianlydemann.com/how-to-cache-http-requests-in-an-angular-pwa/

https://christianlydemann.com/how-to-cache-http-requests-in-an-angular-pwa/

PWA in Angular

• Since version 5.0 Angular supports Progressive Web Apps directly.

• For existing Angular project the package @angular/pwa needs to be added  
 

• Creates manifest.json and ngsw-config.json files

• Provides icons in sizes the platform needs

$ng add @angular/pwa --project <projectname>

PWA in Angular

• Build Angular app for production  
 

• The default development server is not sufficient for testing pwa

• Use the http-server package which comes with node.js

• Run via

$ng build --prod

$http-server -p 8080 -c-1 dist/<project-name>

Customize ngsw-config.json

• Per default all app assets will be cached

– entry „assetGroups" in ngsw-config.json

• Handling for REST-API data requests must be configured manually

– entry „dataGroups“

– definition of URL patterns

– „api-performance“ vs „api-freshness“

– configure individual cache settings

„Performance“ vs. „Freshness“

• With the cache strategy „Performance“ data will be fetched from cache first  
until the expiration date will be reached.

• With the cache strategy „Freshness“ the first attempt is to get fresh data  
from the the server.  
Only if the timeout is reached the data will be get from the cache.

Strategie „Performance“ vs. „Freshness“

{"dataGroups": [{
 "name": "api-performance",
 "urls": [
 "/assets/i18n/**",
 "/api/**"
],
 "cacheConfig": {
 "strategy": "performance",
 "maxSize": 100,
 "maxAge": "3d"
 }
 },
 {
 "name": "api-freshness",
 "urls": [
 "/api/fresh-todo-list"
],
 "cacheConfig": {
 "strategy": "freshness",
 "maxSize": 100,
 "maxAge": "3d",
 "timeout": "10s"
 }
 }
]
}

SSL with Domino Server

• Without SSL connection the Service Worker will not operate

• For public Domino Servers try  
midpoints Let's Encrypt for Domino (LE4D) (it’s free)

• For private Domino Servers use self-signed certificate

– Good instructions: Setting up https with a valid certificate for a local domain – and use
it with Node.js

– Import Certificate Authority (CA) in your test browser

https://www.midpoints.de/de-solutions-LE4D
https://justmarkup.com/log/2018/05/https-valid-certificate-local-domain/
https://justmarkup.com/log/2018/05/https-valid-certificate-local-domain/

Authentication with Domino Server

• Before PWA I used to check for Domino specific Cookies for first check  
if a user is authenticated

• With PWA the session based cookie will not disappear if the browser is closed

• Since IBM Domino 9.0.1 FP10 release new notes.ini setting  
DOMINO_FORCE401_WITH_HTML_LOGIN_PAGE=1 
to force a 401 HTTP return code

http://www-10.lotus.com/ldd/fixlist.nsf/8ed1b46cfdba8957852570c90054623b/2b233f570dc523a78525822700738a75?OpenDocument

Chrome Developer Tools

• The best support for developing PWA is provided by the Chrome Developer Tools

• Initialize an audit to check PWA status

Hybride Apps

Hybride Apps

• The programming model for hybrid apps are HTML and JavaScript.

• Once the app is ready a supporting framework will generate code for native iOS or
Android apps.

• Using Xcode or Android Studio to compile the generated code to a native app.

• Apache Cordova is the base for most of the existing frameworks.

https://cordova.apache.org/

Ionic Framework

• Ionic uses also Apache Cordova

• Originally Ionic only supports Angular (AngularJS)

• Since version 4.0 also React or Vue.js are supported.

• First approaches to move away from Cordova

– Ionic own project Capacitor

• Use payed services for build support

– Creating iOS apps without a Mac

Ionic Look & Feel

• Ionic uses native Look & Feel depending on platform

Ionic Look & Feel

• Appearance is similar but respects the UX guidelines of the platform

Ionic Look & Feel

• During build the corresponding UI element is chosen

Ionic Look & Feel

<ion-list>
 <ion-radio-group>
 <ion-list-header>
 <ion-label>Name</ion-label>
 </ion-list-header>

 <ion-item>
 <ion-label>Biff</ion-label>
 <ion-radio slot="start" value="biff" checked></ion-radio>
 </ion-item>

 <ion-item>
 <ion-label>Griff</ion-label>
 <ion-radio slot="start" value="griff"></ion-radio>
 </ion-item>

 <ion-item>
 <ion-label>Buford</ion-label>
 <ion-radio slot="start" value="buford"></ion-radio>
 </ion-item>
 </ion-radio-group>
</ion-list>

Usage of Storage and HTTP

• Separate packages for dealing with storage and HTTP

• The developer is responsible for providing a strategy how to combine the Storage package
and the HTTP package:

– Store an additional timestamp while storing the data into the cache

– Decide on the expiration time for each type of resource

– Decide whether to test first the cache or getting „fresh“ data

Comparison

Advantage Progressive Web Apps

• Faster development since testing is done in the browser

• No need to deploy the app on test devices

• No approval needed for Apple iOS App Store or Android Play Store

• No Apple developer license

• No company app store

• No Mac needed

Advantage Hybride Apps

• Access to native resources

– Barcode scanner

– Live preview

– Push notifications in iOS

• Nativ Look & Feel

• Higher prestige!

Let’s talk about
money

Photo by Ramiro Mendes on Unsplash

https://unsplash.com/photos/sMCBEI5zkqc?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

What about the costs?

• Both approaches come free to start with

– PWA just depends on browser support

– Angular and Ionic both uses MIT license

• Ionic offers paid support

– It is possible to build production apps without support

• Main factor is development time / costs!

Questions?

Picture Credits

• PWA-Logo  
https://github.com/webmaxru/progressive-web-apps-logo

• Ionic-Logo 
https://de.wikipedia.org/wiki/Datei:Ionic_Logo.svg

• Unplash 
https://unsplash.com/

• Pexels  
https://www.pexels.com/

https://github.com/webmaxru/progressive-web-apps-logo
https://de.wikipedia.org/wiki/Datei:Ionic_Logo.svg
https://unsplash.com/
https://www.pexels.com/

Slide backup

Photo by jesse orrico on Unsplash

https://unsplash.com/photos/h6xNSDlgciU?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/search/photos/storage?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

PWA - Browser Support

• Web App Manifest

– No support for IE, Edge (non Chrome), Firefox, Safari (Desktop)

• Service Worker

– Service Worker itself - Most browsers

– Background Sync API - Only Chromium based browsers

– Fetch - Most browsers

Source: Can I use…?

https://caniuse.com/#feat=web-app-manifest
https://caniuse.com/#search=service%20worker
https://caniuse.com/#home

Ionic & Cordova install

• Ionic and Cordova both use the npm Package manager

• Install with  
 
 
and

$npm install -g ionic

$npm install -g cordova

New Ionic Project

• Create a new project with  
 

• Use additional parameter to define the typ of application and some basic template

$ionic start {Projektname}

Storage

• The Storage package encapsulates different storage options

• Install with  
 

• Install the Cordova plugin to use SQLLite

$npm install @ionic/storage

$ionic cordova plugin add cordova-sqlite-storage

Dependency Injection of the Storage Module

• As described on the Ionic web page

• Modify src/app/app.module.ts

– Add the needed import

import { IonicStorageModule } from '@ionic/storage';

@NgModule({
 …
 imports: […, IonicStorageModule.forRoot()],
 …
})

https://ionicframework.com/docs/building/storage

HTTP Module

• The HTTP package encapsulates the network usage

• Instal with  
 

• Install the corresponding Cordova Plugin

$npm install @ionic-native/http

$ionic cordova plugin add cordova-plugin-advanced-http

Dependency Injection of the HTTP Module

• As described on the Ionic web page

• Datei src/app/app.module.ts anpassen

– Import hinzufügen

import { HTTP } from '@ionic-native/http/ngx';

@NgModule({
 …
 imports: […, HTTP],
 …
})

https://ionicframework.com/docs/building/storage

iOS or Android Build

• iOS Build 
 

– open afterwards in Xcode Project

• Android Build 
 

– open afterwards in Android Studio

$ionic cordova prepare ios

$ionic cordova prepare android

Mobile Web vs. Apps

„Add-to-Home-Screen“

• Dialog will displayed
automatically after frequent visit
on the web site

• The browser decides!

• The developer can not push it!

„Splash-Screen“

• Will be shown while the web app
will be loaded.

